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Abstract
The level spacing distribution of general, non-normal, Gaussian random 2D
matrices is derived. In particular, tridiagonal matrices have no level repulsion
and show a halfsided Gaussian distribution. General non-normal matrices show
strong level repulsion. The repulsion exponent is 2 − 0log.

PACS numbers: 01.55.+b, 02.50.Cw

1. Introduction

Quantum systems are described by observables, which are represented by selfadjoint operators
A = A+. The corresponding matrix representation Aij satisfies Aij = A∗

ji . Physical
symmetries are described by unitary operators UU+ = U+U = 1, with Uij as the
corresponding matrix. The eigenvalue distribution of statistical sets of selfadjoint, unitary
or real symmetric operators has been studied intensively in the last few decades [1–5].

There are also other, more general matrices, which are of physical interest but not enjoying
the particular property of being symmetric, Hermitian or unitary. The common property of
these latter three classes of matrices is that they commute with their respective adjoint ones,
i.e. [A,A+] = 0 or AA+ = A+A. This common property guarantees that the eigenvectors are
mutually orthogonal, ϕa ⊥ ϕb. Operators (matrices) with

[A,A+] = 0 (1)

are denoted as normal operators (matrices). If this property (1) does not hold,

[A,A+] �= 0, (2)

the operator (matrix) is called non-normal, cf [7–10]. The question arises if some statements
can be made about the eigenvalue distribution of non-normal operators or matrices?
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The case of fully complex values for the matrix elements of a Gaussian ensemble of
random matrices has been studied by Ginibre [1, 4, 6], and the cubic level repulsion was
obtained. The general matrices play an important role in the quantum chaos of dissipative
systems, i.e. those coupled to a heat bath [4]. Ginibre’s method cannot be directly applied
to the general real case. In this paper we calculate the level spacing distribution for a wide
class of 2D real non-normal Gaussian random matrices, generalizing them also by considering
different variances for the diagonal and off-diagonal elements, and find (almost) quadratic
level repulsion, namely ∝S2 log(1/S).

2. Non-normal matrices

Consider 2×2 matrices A = (Aij ), where i, j = 1 or 2. This matrix has two diagonal elements,
which can always be chosen as a and −a. For general Aij introduce As = 1

2 (A11 + A22).
Then A11 − As ≡ a = −(A22 − As), i.e. one subtracts the diagonal matrix As1 to get

formula (3) without loss of generality. Quite generally, for a matrix
(
a b
c d

)
the level spacing

S = λ1 − λ2 =
√

(a − d)2 + 4bc depends only on the difference a − d, so that we can
arbitrarily shift a and d by a constant, in particular by As .

Let a be real and the nondiagonal elements be b1 and b2; thus

A = (Aij ) =
(

a b1

b2 −a

)
. (3)

If also bi are real and b1 = b2, the matrix A is symmetric. If bi are complex and b2 = b∗
1, the

matrix A is selfadjoint or Hermitian. If in addition the relations hold |b1|2 = 1 − a2 = |b2|2
and a � 1, A is unitary.

The eigenvalues of A follow from

|A − λ1| =
∣∣∣∣a − λ b1

b2 −a − λ

∣∣∣∣ = λ2 − a2 − b1b2 = 0, (4)

i.e.

λ1,2 = ±
√

a2 + b1b2. (5)

The eigenvalues are real for symmetric (b1 = b2), for Hermitian (b2 = b∗
1) and for two-

dimensional unitary (a2 + |b1|2 = 1) matrices. In case of b1b2 real and larger than −a2 the
eigenvalues are still real, in general not.

If the matrix A is not symmetric, Hermitian or unitary, it is no longer normal. In the
general case, one finds for the commutator

[A,A+] =
(

|b1|2 − |b2|2 2a(b∗
2 − b1)

2a(b2 − b∗
1) |b2|2 − |b1|2

)
. (6)

Apparently the commutator [A,A+] = 0 is zero if b2 = b∗
1, i.e. in the symmetric and the

Hermitian cases. In general, 2 × 2 matrices A are non-normal, [A,A+] �= 0.

3. Real tridiagonal matrices

We first study the special case of a tridiagonal 2 × 2 matrix, setting b2 = 0 and b1 ≡ b, real:

A =
(

a b

0 −a

)
, real, upper tridiagonalmatrix. (7)
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The eigenvalues are λ1,2 = ±|a| = ±a. The eigenvectors, properly normalized, are

ϕ1 =
(

1
0

)
, ϕ2 = 1√

4a2 + b2

(−b

2a

)
. (8)

The angle α between the eigenvectors is not π/2 as for normal matrices with different
eigenvalues, but is

cos α ≡ 〈ϕ1|ϕ2〉 = (1 0)

(−b

2a

)
· 1√

4a2 + b2
= −b√

4a2 + b2
. (9)

Special cases are the orthogonal case b = 0; thus cosα = 0 and α = π
2 (eigenvectors

are perpendicular, ⊥). The parallel/antiparallel cases are obtained if b → ∞. Thus
cos α = −sgn b, implying α = (2n + 1)π (the eigenvectors are antiparallel �) or α = 2nπ

(the eigenvectors are now parallel, ⇒); always n = 0,±1, . . . .

The matrix commutator reads

[A,A+] = b

(
b −2a

−2a −b

)
�= 0 if b �= 0, non-normal case. (10)

The commutator itself is, of course, a Hermitian matrix, per construction.
Let us calculate the level spacing or distance S between the two eigenvalues, with S � 0:

S = |λ1 − λ2| = 2|a|. (11)

For the matrix elements on the diagonal, a, we assume a Gaussian distribution as usual. The
(normalized) distribution g(b) of real b can be allowed to be arbitrary

g(a) = 1

σ
√

π
· exp

(
− a2

σ 2

)
,

∫ +∞

−∞
g(a) da = 1. (12)

This gives the following probability distribution P(S) for the level spacing S of a (non-normal)
real tridiagonal matrix:

P(S) =
∫ +∞

−∞

∫ +∞

−∞
da db δ(S − 2|a|)g(a)g(b) =

∫ +∞

−∞
da δ(S − 2|a|)g(a). (13)

Thus, completely independent of the b-distribution

P(S) = 1

2
g

(
S

2

)
· 2 = 1

σ
√

π
exp

(
− S2

4σ 2

)
, S � 0. (14)

This is ‘half’ a Gaussian, since S � 0 is always positive, and it is normalized.
In this case of a non-normal real tridiagonal matrix there is no level repulsion,

corresponding to a level repulsion exponent 0, and we have a non-repulsive Gaussian level
spacing distribution. Clearly this as well holds for a lower instead of an upper tridiagonal
matrix, and of course, the result is the same as for the diagonal matrices.

4. Physical example of non-normal matrix

There are many cases in which non-normal matrices appear in physics. The prominent ones
are known from fluid mechanics [8, 9]. They are also met in other fields, including ecology,
cf [11]. As an example for illustration we here consider the classical, damped, harmonic
oscillator mẍ = −cx − αẋ, where x is its amplitude; m, c and α are its mass, string and
damping constants, respectively. We nondimensionalize by measuring the amplitude in terms
of the initial amplitude x0 and the time in terms of the inverse bare eigenfrequency ω0 = √

c/m.
The set of first-order equations of motion then is ẋ = v and v̇ = −x − 2γ v. Here, 2γ = α

mω0
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is the damping rate in terms of the bare eigenfrequency of the oscillator. In a matrix form, the
equations of motion are(

ẋ

v̇

)
=

(
0 1

−1 −2γ

) (
x

v

)
≡ L

(
x

v

)
. (15)

The matrix L is real and non-symmetric. Its nondimensionalized eigenvalues are λ± =
−γ ±

√
γ 2 − 1. These eigenvalues are real in the overdamped case γ > 1, they are conjugate

complex in the underdamped case γ < 1, and they are degenerate (and real) in the aperiodic
limit γ = 1. Note that the nondimensionalized bare eigenfrequency is 1. The linear matrix
operator L (15) of the damped harmonic oscillator is non-normal,

[L,L+] = −4γ

(
0 1
1 0

)
. (16)

It is only for the ideal, undamped oscillator γ = 0 that the dynamical matrix is normal. As
soon as there is nonzero damping γ �= 0, the linear operator L for the damped harmonic
oscillator dynamics is non-normal.

The normalized eigenvectors are

	0
± = 1√

2

(
1
λ±

)
, underdamped, (17)

and

	0
± = 1√

1 + λ2±

(
1
λ±

)
, overdamped. (18)

The angle � between the eigenvectors is calculated as
〈
	0

+

∣∣	0
−
〉∣∣ = cos( � ) = γ in the

underdamped case γ < 1 and =1/γ in the overdamped case γ > 1. In the special case
of the aperiodic limit γ = 1, we find 	0

+ = 	0
− = 1√

2
(1,−1)+. The time dependence of the

amplitude then is x(t) = [1 + t (v + 1)] e−t . In general, the amplitude oscillates. If 0 � γ < 1
the eigenvector 	0

− with increasing γ rotates towards 	0
+, if γ = 1 both coincide, and if

1 < γ → ∞ the eigenvector 	0
− rotates back into the perpendicular position to 	0

+.

5. Real matrix with positive nondiagonal elements

We now consider the more general case of a real 2×2 matrix with positive definite nondiagonal
elements

A =
(

a |b1|
|b2| −a

)
, a real , b1,2 real. (19)

This matrix is non-normal, unless b1 = b2. Its real eigenvalues always read

λ± = ±
√

a2 + |b1||b2|. (20)

Their distance S = |λ+ − λ−| is given by the positive root

S = 2
√

a2 + |b1||b2|, S � 2a always. (21)

Let now the three real numbers a, b1, b2 be Gaussian distributed according to (12). All are
centred around zero; they have widths σ for a and σ1,2 for b1,2. The distribution P(S) of the
level distances S is given by

P(S) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
da db1 db2 δ(S − 2

√
a2 + |b1||b2|)g(a)g(b1)g(b2). (22)
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If in particular σ2 → 0, i.e. if b2 → 0, the previous case (14) is rediscovered. In another
particular case, if b1 = b2 ≡ b, the matrix A is real and symmetric. Then take g(b2) as the delta-
function δ(b1 − b2). If in addition σ1 = σ , same widths, we find g(a)g(b) ∝ exp

(− a2

σ 2 − b2

σ 2

)
.

One can introduce plane polar coordinates r and ϕ with a2 + b2 = r2 and calculate the integrals
in (22). The result is the well-known Wigner distribution

P(S) = S

2σ 2
exp

(
− S2

4σ 2

)
. (23)

For σ 2 = 1/π the distribution function reads P(S) = π
2 S e− π

4 S2
, the well-known level

distribution (Wigner surmise) for real, symmetric, Gaussian random matrices, normalized to
unit mean level spacing. There is linear level repulsion ∝ S, meaning that the level repulsion
exponent is 1. This result is indeed the exact 2D GOE result, and quite surprisingly differs
only a little from the infinite dimensional limiting GOE result, cf chapter 4, especially 4.4, in
Haake’s book [4].

Let us now come back to the general case (22). The zeros of the delta function as a function

of a are a± = ±
√

S2

4 − |b1||b2|. Expanding the argument of the delta function around a(S),
one obtains

P(S) =
∫ ∫

|b1||b2|�S2/4
g(b1)g(b2)

[
g(a+)

4|a+|/S +
g(a−)

4|a−|/S
]

. (24)

Since g(a+) = g(a−) and |a+| = |a−| = a(S) =
√

S2

4 − |b1||b2|, we find for the level
distribution the following basic expression:

P(S) = S

2σ
√

π
exp

(
− S2

4σ 2

)
I (S), (25)

with the integral factor

I (S) =
∫ ∫

|b1||b2|�S2/4
db1 db2g1(b1)g2(b2)

e
|b1 ||b2 |

σ2

a(S)
. (26)

The function

a(S) =
√

S2

4
− |b1||b2| (27)

is the zero of the delta function in equation (22) for positive S.
We again cross-check by considering the special choice g2(b2) = δ(b2) and recover

our previous result for the upper tridiagonal matrix: We now have a(S) = S/2, the
constraint of the integral is satisfied automatically; thus I (S) = 2/S, immediately leading to
P(S) = 1

σ
√

π
exp(− S2

4σ 2 ), which agrees with equation (14).
In the general case, we introduce new coordinates x1, x2 instead of |b1|, |b2| in order to

take easier care of the constraint, given by the border of the integral I (S). First, due to evenness
in b1 and b2 we can reduce the integration over the full coordinate plane to a four times the
integral over the positive quadrant b1 � 0, b2 � 0. Then, define xi = 2bi/S, i = 1, 2, with
xi � 0, since bi are restricted to positive values now. Then, we can write

I (S) = 2S

πσ1σ2
F(S), (28)

with the factor

F(S) =
∫ ∫

x1�0,x2�0,x1x2�1
dx1 dx2

exp
(− S2

4

[ x2
1

σ 2
1

+ x2
2

σ 2
2

− x1x2
σ 2

])
√

1 − x1x2
. (29)
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Introducing again new (hyperbolic) coordinates u = x1x2 ∈ [0, 1] and v = x1/x2 ∈ [0,∞),
with the Jacobian determinant J = 1/(2v), we obtain

F(S) =
∫ 1

0

du eβu

√
1 − u

∫ ∞

0

dv

2v
exp

(
−βu

(
α1v +

α2

v

))
, (30)

where

β = S2

4σ 2
, α1 = σ 2

σ 2
1

, α2 = σ 2

σ 2
2

. (31)

The v-integral can be expressed in terms of the modified Bessel function of second kind and
zero order K0 (cf [12] No. 3.478, 4), so that we have

F(S) =
∫ 1

0

du eβu

√
1 − u

K0(2β
√

α1α2u). (32)

With the substitution ξ = √
1 − u, this integral can be rearranged into the alternative form

F(S) = 2eβ

∫ 1

0
dξ e−βξ 2

K0(2β
√

α1α2(1 − ξ 2)). (33)

As we could not simplify either of these expressions further in a closed form, we instead
use it to consider the three limiting cases: (i) small β 
 1, (ii) large β � 1 and (iii) large
λ = 2β

√
α1α2 � 1. Physically these limits mean: (i) S 
 2σ , small level distances in

comparison to the width of the diagonal element distribution. (ii) The level spacings are much
larger than the width of the diagonal element distribution, S � 2σ , i.e. the large spacings on
the tail of the level distribution are considered. (iii) The level distance is compared with the
fluctuations of the off-diagonal elements bi , i.e. S � √

2σg, S being large compared with the
geometric mean σg ≡ √

σ1σ2 of the widths of bi .

5.1. Small β or S 
 2σ

In this case we observe ([12], No. 8.447, 1 and 3, and 8.362, 3) that K0(z) can be expanded as
K0(z) = − ln z

2 − C + O(z), where C is the Euler constant 0.577215 . . . . This approximation
leads to the result

F(S) = − ln
S2

4σ1σ2
− γ − 2C, (34)

where γ = ∫ 1
0

du ln u√
1−u

= −1.22741. Thus the leading order for β ∝ S2 → 0 is F(S) =
2 ln(4σ1σ2S

−2), and with equations (25), (28) we have

P(S) = S2

σσ1σ2π3/2

(
ln

4σ1σ2

S2
− γ − 2C + O(S2)

)
, (35)

where the additive constant is −γ −2C = 0.07298. This behaviour extends within the interval
of the order of S � √

σ1σ2, whose length shrinks to zero with either σ1 or σ2, and beyond that
border, when S >

√
σ1σ2, we find the slightly perturbed half-Gaussian distribution, as will be

explained in subsection 5.3, equation (40). Instead of cubic level repulsion characteristic for
the general complex Gaussian matrices treated by Ginibre [1, 4, 6], we have here for the real
matrices with positive but general Gaussian distributed nondiagonal elements only 2 − Olog

for the level repulsion exponent. Unfortunately, in Ginibre’s work the special case of real
general matrices, including in particular the non-normal matrices, has not been worked out
explicitly because this case presents severe technical difficulties. Hence the importance of
our findings, even if so far, limited to the two-dimensional matrices. Since the level repulsion
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phenomenon is controlled and determined by the interaction of two neighbouring levels (triple
level ‘collisions’ having the probability zero), we do believe that the level repulsion exponent
that we find for dimension 2 holds true for any dimension of random matrices of the given
class, namely for real non-normal matrices. We see that the restriction from complex to real
non-normal matrices changes the level repulsion exponent from 3 to practically 2 (because the
effect of the logarithm is so small).

5.2. Large β or S � 2σ , tail of distribution

We go back to equation (33) and employ the mean value theorem for this integral. It
says that there is a value ξ̄ in the ξ -integration interval [0, 1] and thus another constant
ū = 1 − ξ̄ 2 ∈ [0, 1], ū independent of the integration variable ξ but in general a function of
β, α1, α2, i.e. of S, σ, σ1, σ2, such that we have

F(S) = 2 eβūK0(2β
√

α1α2ū). (36)

Since for large β (or S) the main contribution comes from ξ ≈ 1, ū will be close to zero. For
large β, we use the asymptotic expansion ([12] No. 8.451, 6)

K0(z) =
√

π

2z
e−z

(
1 + O

(
1

z

))
, (37)

and from (25, 28, 36) we obtain

P(S) = 2S

σπ
√

ūσ1σ2
exp

[
−

(
2ū

σ 2

σ1σ2
+ (1 − ū)

)
S2

4σ 2

]
, (38)

where ū is a function depending only weakly on S, σ, σ1, σ2 and is close to zero, but certainly
smaller than 1, so that the argument of the exponential function in (38) is always negative.
Thus, the tail of the spacing distribution P(S) for large S always decays as a Gaussian.

5.3. Small σ1 and/or σ2, or large λ = 2β
√

α1α2 or limit S � √
2
√

σ1σ2

If σ1 or/and σ2 go to zero, we have the limit of the triangular matrix with the ‘half’ Gaussian
level spacing distribution (14). We wish to work out this limiting case from the general
expression (32). When σ1, σ2 are small, or equivalently α1, α2 large, the argument λu of K0,
where λ = 2β

√
α1α2 = 2βσ 2/(σ1σ2), in (32) is very large, and thus the functional value of

K0 is exponentially small. In such a case the main contribution to the integral over the interval
[0, 1] stems from the values of u close to zero, and thus we can Taylor expand eβu/

√
1 − u in

powers of u, namely eβu/
√

1 − u = 1 +
(
β + 1

2

)
u +

(
3
8 + β

2 + β2

2

)
u2 + O(u3), and also extend

the upper integration limit from 1 to ∞, thereby committing an exponentially small error. The
resulting integrals

∫ ∞
0 umK0(λu) du for m = 0, 1, 2, . . . can be evaluated explicitly (cf [12]

No. 6.561, 16). We get π/(2λ), 1/λ2 and π/(2λ3), for m = 0, 1, 2 respectively, and so we
obtain

F(S) = π

2λ
+

β + 1
2

λ2
+

π

2λ3

(
3

8
+

β

2
+

β2

2

)
+ O(λ−4). (39)

Taking into account equations (25) and (28), we derive from (39)

P(S) = 1

σ
√

π
exp

(
− S2

4σ 2

) (
1 +

2β + 1

πλ
+

1

λ2

(
3

8
+

β

2
+

β2

2

)
+ O(λ−3)

)
(40)

which in the limit σ1σ2 → 0, implying λ → ∞, indeed goes to the result for the triangular
matrices, namely the ‘half’ Gaussian distribution (14). Due to the extension of the upper



416 S Grossmann and M Robnik

integration limit from 1 to ∞ we have also lost some exponentially small terms of order
exp(−const · λ) in the third factor in equation (40), which are of course for large λ much
smaller than the algebraic terms given there. Clearly, the limit of the triangular matrix is
obtained if either σ1, or σ2, or both (→ diagonal matrix) go to zero.

In the context of quantum chaos and energy level statistics, in all cases the final values of
σ, σ1 and σ2, preferably σ , are chosen such that the level spacing distribution has a normalized
(unit) first moment

∫ ∞
0 SP (S) dS = 1, meaning that the mean level spacing is 1. We do

without such normalization here, because the physical interpretation of the non-normal matrix
has not been discussed in the corresponding quantum context. We just remark that the general
Gaussian random matrices (with the same variance for the off-diagonal elements and twice
larger for the diagonal matrix elements), including the non-normal matrices, with complex
matrix elements and complex eigenvalues, play an important role in dissipative quantum
systems, i.e. those quantal Hamiltonian systems which are coupled to a heat bath. For a
detailed discussion and theory, see chapter 9 in Haake’s book [4].

All the results of section 5 can be extended to the case of purely negative off-diagonal
matrix elements, which is obvious from the correspondingly rewritten equations (19), (20)
and (22).

The general case of arbitrary but possibly mixed positive and negative off-diagonal matrix
elements in equation (3) is difficult to handle and remains an open problem. The case of fully
complex values for the matrix elements of the Gaussian ensemble of random matrices has
been studied by Ginibre [1, 4, 6], and cubic level repulsion was obtained. The reduction of
that method to the general real case remains an open problem.

6. Relation to GOE ensemble

In this section, we want to clarify the relation between the distribution of our non-normal
matrix ensemble and that of the traditional two-dimensional GOE ensemble, and show that in
the real symmetric case they are indeed the same.

For a general two-dimensional real symmetric matrix,
(
a b
b c

)
, the level spacing is equal

to S = 2
√

(a − c)2 + 4b2. Let in general all matrix elements a, b and c have the normalized
Gaussian distribution ga(a), gb(b) and gc(c), as defined in (12), but generally with different
variances σ 2

a , σ 2
b and σ 2

c , respectively. The level spacing distribution is given as

P(S) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
da db dc ga(a)gb(b)gc(c)δ(S −

√
(a − c)2 + 4b2). (41)

Introducing new coordinates x = 1
2 (a + c), y = 1

2 (a − c), with the Jacobi determinant J = 2,
we see that the delta function does not depend on x. By setting σa = σc (as necessary for the
GOE ensemble) and performing the integration over x, we find

P(S) =
√

2

πσaσb

∫ ∞

−∞

∫ ∞

−∞
dy db e

−
(

2y2

σ2
a

+ b2

σ2
b

)
δ(S − 2

√
y2 + b2). (42)

Now, again, we take into account the GOE hypothesis, namely σ 2
a = σ 2

c = 2σ 2
b = 2σ 2, i.e.

the variance for the diagonal matrix elements is twice the variance of the off-diagonal matrix
elements, and obtain (in terms of the off-diagonal variance σ 2)

P(S) = 1

πσ 2

∫ ∞

−∞

∫ ∞

−∞
dy db e−

(
y2+b2

σ2

)
δ(S − 2

√
y2 + b2), (43)

which is indeed exactly our special case, the exact two-dimensional GOE case, calculated

and discussed just following equation (22). Therefore, indeed, our ensemble
(
a b
b −a

)
with
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σa = σb = σ is precisely equivalent to the exact two-dimensional GOE ensemble, with the
same variance σ 2 for the off-diagonal elements and twice larger variance 2σ 2 for diagonal
elements. This small and a little bit confusing difference in the two definitions is the
consequence of our choice c = −a.

7. Asymmetric distribution of diagonal and nondiagonal elements

Now we go back to just such a real symmetric Gaussian ensemble
(
a b
b −a

)
and generalize it by

allowing for different widths in the statistics of the diagonal elements a and the nondiagonal
elements b. Thus, we allow for different variances σa �= σb. Then our starting equation for
the level spacing distribution is (42),

P(S) =
∫ ∞

−∞

∫ ∞

−∞
da db ga(a)gb(b)δ(S − 2

√
a2 + b2). (44)

The Gaussians ga(a) and gb(b) are normalized as in equation (12), but σa �= σb is admitted.
Introducing polar coordinates a = r cos ϕ, b = r sin ϕ, ϕ ∈ [0, 2π), and integrating over
r ∈ [0,∞), we immediately get

P(S) = S

4πσaσb

∫ 2π

0
dϕ exp

(
−S2

4

(
σ−2

a cos2 ϕ + σ−2
b sin2 ϕ

))
. (45)

Further, using cos2 ϕ = 1
2 (1 + cos 2ϕ) and sin2 ϕ = 1

2 (1 − cos 2ϕ), and after some elementary
manipulations we get, using the integral representation for I0(z),

P(S) = S

2σaσb

e− S2

8 (σ−2
a +σ−2

b )I0

(
S2

8

(
σ−2

a − σ−2
b

))
. (46)

Here I0(z) is the modified Bessel function of the first kind and zero order (cf [12], No. 8.406).
We now introduce the notations

σ−2
m = 1

2

(
σ−2

a + σ−2
b

)
and u = 1

8

(
σ−2

a − σ−2
b

)
. (47)

While σm is a measure for the mean statistical width of both, the diagonal and the nondiagonal
elements, the parameter u indicates the difference of the respective widths on the diagonal
and nondiagonal. This difference parameter u can be positive or negative. u > 0 means that
the nondiagonal element distribution is broader than that of the diagonal elements, while for
u < 0 the statistical spread on the nondiagonal is smaller than on the diagonal. With these
parameters, we can write

P(S) =
√

1 − (
4σ 2

mu
)2 S

2σ 2
m

e−S2/4σ 2
mI0(uS2). (48)

Note that the square root is always real, since always
∣∣4σ 2

mu
∣∣ = |σ−2

a −σ−2
b |

σ−2
a +σ−2

b

� 1. The level

distribution P(S) is even in the difference parameter u, because I0(z) is an even function of
z. Thus, the two cases of either broader or smaller statistical width on the diagonal relative to
the nondiagonal elements behave the same. To elucidate limiting cases, we observe that I0(z)

has the power (Taylor) expansion at small z:

I (z) = 1 +
z2

4
+

z4

64
+

z6

2304
+ O(z8), (49)

and the asymptotic expansion at large z is

I (z) ≈ e|z|
√

2π |z| . (50)

Using these facts, it is easy to work out the following special and limiting cases of the general
result (46).
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7.1. |u|S2 
 1, i.e. small S and/or small asymmetry |u| 
 1

Small values of u mean that there are only small deviations from the two-dimensional GOE.
In this case or in the limit S → 0, we have

P(S) = S

2σaσb

e− S2

8 (σ−2
a +σ−2

b )

(
1 +

u2S2

4
+

u4S4

64
+

u6S6

2304
+ O(u8S8)

)
. (51)

7.2. |u|S2 � 1, outer tail of the distribution

The asymptotic expansion describes the case where S not only exceeds σa,b, but even exceeds
|u|−1/2 � σa, σb. The behaviour in this outer tail of the distribution is

P(S) = 1

σm

√
2π

√√√√1 − (
4|u|σ 2

m

)2

4|u|σ 2
m

e
− S2

4σ2
m

(1−4|u|σ 2
m)

, S � 1√|u| � σa,b. (52)

Thus the far outer tail is always Gaussian, in fact half-Gaussian because S > 0 is always only
positive. But note that its width σm

/√
1 − 4|u|σ 2

m in the far outer tail may be considerably
larger than the average rms width σm.

Another way of presenting this asymptotic result is, after a straightforward calculation,

P(S) = 1

σmax
√

π
e
− S2

4σ2
max , σmax = max{σa, σb}, S � 1√|u| � σa,b. (53)

7.3. Symmetric case u = 0 , i.e. σa = σb ≡ σ

In this symmetric case u = 0 we have σm = σa = σb = σ , leading to

P(S) = S

2σ 2
e− S2

4σ2 , (54)

which for normalized level spacing 〈S〉 = 1 and therefore σ 2 = 1/π precisely is the Wigner
surmise, the exact two-dimensional GOE case.

7.4. S arbitrary, but either σa = 0 or σb = 0

In this case, we either have a diagonal matrix with Gaussian distributed diagonal elements a
or a pure nondiagonal but symmetric matrix with Gaussian distribution of its matrix elements
b. Denoting the remaining nonzero width by σ , we have the following expansions for the
control parameters σm and |u| in terms of the vanishing width written as ε → 0:

σ 2
m = 2ε2

(
1 − ε2

σ 2

)
, |u| = 1

8ε2

(
1 − ε2

σ 2

)
, 4|u|σ 2

m = 1 − 2
ε2

σ 2
. (55)

Since |u| → ∞, we have to use equation (50) and find—but now without any restriction on
S—from equation (52)

P(S) = 1

σ
√

π
e− S2

4σ2 , (56)

valid for all S > 0, which is exactly the half-Gaussian (14).
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7.5. Comments on the moments

Now we want to work out the moments of distributions (46) and (48). The zero-order moment
or normalization is immediately satisfied as one proves from the integral representation (44).
One can also check from (48), using [12], No. 6.643, 2,∫ ∞

0
P(S) dS = 1. (57)

For the first moment, the mean level spacing, one calculates

〈S〉 =
∫ ∞

0
SP (S) dS = σ 3

m

√
π

σaσb
2F1

(
3

4
,

5

4
, 1, r2

)
. (58)

Here, r is the relative variance difference:

r =
∣∣∣∣σ 2

a − σ 2
b

σ 2
a + σ 2

b

∣∣∣∣ . (59)

Using the power expansion of the hypergeometric series 2F1
(

3
4 , 5

4 , 1, r2
)

as a function of the
relative variance difference r, we find

〈S〉 = σ 3
m

√
π

σaσb

(
1 +

15

16
r2 +

945

1024
r4 +

15015

16384
r6 + O(r8)

)
. (60)

In the special case of symmetric diagonal und nondiagonal element distributions u = r = 0
and σm = σa = σb = σ , we immediately obtain 〈S〉 = σ

√
π . Thus the first moment is

normalized to unity if σ = 1/
√

π , which is the well-known result leading to the Wigner
surmise.

The general second moment is analytically much simpler, namely

〈S2〉 =
∫ ∞

0
S2P(S) dS = 2

∫ ∞

0
E(S) dS = 4σ 2

a σ 2
b

σ 2
m

, (61)

where E(S) is the gap probability, i.e. the probability that on an interval of length S (after
spectral unfolding!) there is no level. Evidently, after the normalization of the mean level
spacing to 1, i.e. 〈S〉 = 1, the relative variance µ2 = 〈S2〉 − 1 of the level spacing distribution

P(S) is minimal, when 4σ 2
a σ 2

b

σ 2
m

= 4σ 2
m

1−(4|u|σ 2
m)2 is minimal, which for fixed inverse mean variance

σm precisely happens for the symmetric case u = 0. Hence,

µ2 = 2
∫ ∞

0
E(S) dS − 1 = 〈S2〉 − 1 = 4σ 2 − 1 = 4

π
− 1 = 0.27324, (62)

which is the two-dimensional GOE result (Wigner surmise). We conclude that the two-
dimensional GOE case, corrresponding to u = 0, gives the strongest level repulsion among
all generalized real symmetric Gaussian random matrix ensembles. Probably this result can
be generalized to any dimension D, including the infinite matrices. This is our conjecture.

Another interesting limiting case is that of maximal difference between the variances of
the diagonal and nondiagonal elements. One of the variances tends to zero, say σa = ε → 0;
the other one stays finite σb = σ . Then the difference parameter u = 1/(8ε2) → ∞, the
relative difference parameter r → 1 becomes unity, and the inverse mean of the widths
σ 2

m = 2ε2 → 0 also vanishes. One either can calculate the moments from equations (58) and
(61) using these limits of the corresponding parameters, or can use the level statistics (56)
directly. Both leads to the moments 〈S〉 = 2σ/

√
π and 〈S2〉 = 2σ 2. For the relative variance

of the level distribution in this most asymmetric case, we then obtain

µ2 = 〈S2〉 − 〈S〉2

〈S〉2
= 2 − 4

π

4
π

= π

2
− 1 = 0.5708. (63)
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We mention that the second moment of P(S), after the normalization 〈S〉 = 1, namely
µ2 = 〈S2〉 − 1, is largest for Poissonian matrices, equal to 1. For the uniform spectrum
(one-dimensional harmonic oscillator) it is the smallest possible, equal to 0. For the two-
dimensional GOE, it is 4/π − 1 = 0.27324. Therefore, µ2 seems to be a monotonic measure
of the transition from Poisson to GOE and further to the uniform spectrum, which has been
already observed in [13].

An important one parameter family of level spacing distributions which interpolates
between the Poisson and GOE level spacing distributions is the Berry–Robnik formula
[14–19], which has a sound physical foundation, and has been recently extensively studied
and numerically verified to hold in the asymptotic (sufficiently deep) semiclassical limit of
a sufficiently small effective Planck constant. The basic assumption behind that formula is
the statistical independence (no correlations) between the regular and chaotic energy levels,
which in turn rests upon the principle of uniform semiclassical condensation [15] (of the
Wigner functions of the eigenstates). The deviations from the Berry–Robnik distribution
function due to correlations (interacting levels due to tunnelling effects) between the regular
and chaotic energy levels, at lower energies, or larger effective Planck constant, are a subject
of intense current research [20].

8. Discussion and conclusions

Motivated by the important role of non-normal matrices in physics, we have discussed the
statistical properties of their eigenvalues, in particular the level spacing distribution P(S)

for two-dimensional matrices, allowing for general matrices with real diagonal elements and
positive real nondiagonal elements. In this case we have shown that the level repulsion
exponent at small S is 2 − Olog, whilst the tail is always Gaussian. In the limit of small
dispersion of the nondiagonal elements, we have recovered the ‘half’ Gaussian distribution
which holds for tridiagonal matrices. These, surprisingly, have no level repulsion, analogous
to the case of integrable systems with their Poissonian spacing distribution. Still they differ
from a Poissonian but are fully Gaussian. Of course, in the special case of real symmetric
matrices we again find the Wigner distribution, which is the exact (rigorous) 2D GOE level
spacing distribution, and we explain the equivalence between the GOE ensemble and our
real symmetric ensemble (with c = −a for the diagonal matrix elements). The fully general
case of entirely general real matrices with all elements Gaussian distributed (with different
dispersions) is still open, whilst the fully general Gaussian complex case has been studied
by Ginibre four decades ago [6], in which case the cubic level repulsion exponent has been
found [1, 4], but the reduction to the real general case is still open. We believe that research
in this direction is still important and interesting, with various interesting open questions, also
in direction of mixed-type systems discussed at the end of section 7.
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Note added in proof. As Dr. Hans-Jürgen Sommers after reading our paper, section 5, has claimed, in the case of
real non-diagonal elements b1,2 with arbitrary signs, the level repulsion turns out to be ∝ S, i.e., the repulsion index
is 1. But this only holds if complex eigenvalues are allowed; for real eigenvalues only the index is still 2 − Olog. We
shall come back to this case and comment on it in the forthcoming paper.
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